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Generalized q-bosons and their squeezed states 
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Abstract .  Generalized q-boson operators associated with the simultaneous creation 
of several q-bosons are introduced. These operatm give rise to a realization of the 
quantum Heisenberg-Weyl algebra andare applied to  the construction of comspond- 
ing Holstein-Primakoff realizations of the quantum algebras SU,(Z) and SU,(l, 1). 
Coherent states of thew algebras are defined in the various ways suggtsted by the 
equivalent definitions of the harmonic oscillator coherent states. and some of their 
propertie are studied. Particular attention is devoted to the squeezing properties of 
the quadrature of the electromagnetic field in these states. 

1. Introduction 

Deformations of groups and corresponding algebras have been considered for some time 
(see, for example, [l]). Recent interest in the class of deformations referred to as quan- 
tum groups and quantum algebras may have attracted more attention in the physical 
literature than perhaps is so far warranted by any concrete achievements, since their 
specific relevance to physical reality has yet to be established. However, we believe 
b u a b  l b  ,,my p'u"" rrerylur b" pusJ"SJ a 'CaJ",,a",c rq,o,uur.r; VI bsL,rl,rquor all" LCa"lb.3 

concerning the properties of these algebras and the wavefunctions they naturally give 
rise to. One conceivable direction in which this formalism may find worthwhile phys- 
ical applications is the formulation of approximations to realistic physical situations. 
Thus, the surprising role of the harmonic oscillator which serves as a paradigmatic 
approximation to an amazingly rich and diverse set of physical situations, may be 

deformed oscillator which contains the familiar oscillator as a special, limiting case. 
While more ambitious goals, involving a fundamental extension or modification of the 
structure of quantum mechanics, may be reasonably contemplated with the formalism 
presently considered, the present article is addressed primarily to the issue of pro- 
viding the necessary tools for the consideration of the deformed harmonic oscillator 
in the context of approximating a realistic system within the accepted framework of 
quantum mechanics. 
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2. General ized q-boson operators 

Bason operators satisfy the Heisenberg-Weyl algebra 

J h'otriel and A I Solomon 

[b, b'] = 1 

[n, bt] = bt 

where n = bib. 
Generalized boson operators [2] of the form 

Bk = bkfk(n) = f k ( n +  k)bk 

B: = fk(n)(bt)k 

are defined so as to satisfy an algebra isomorphic 

[Bk,B!I=l 

[Nk:  Bf] = EL 

where Nk = BfB,. One finds that 

where [1z[ is the integral part of 2. Furthermore 

ti of boson operators, namely 

(3) 

A deformation of the standard boson operator b-the swcalled q-boson operator 
a-atisfying the quantum Heisenberg-Weyi aigebra 

.at -qat, = q-" 

[n, a+] = a t  

with q reai and positive, has been recentiy introduced iS,4j. The operators a were 
shown to be realizable in terms of boson operators of the form 

*dxxe 

b1, = (Q" - q - ' ) / ( Q  - 'I-*) (8 )  

Note that limq,l[z], = z ,  which means that for q = 1 the q-boson operators reduce 
to  standard boson operators. 
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Using equation (7) we find that 

utu = [bib], = [n], 

oat = [n + 11, , 

We now introduce generalized q-boson operators A, and AL where 

= u X f k , q ( n )  

AI = f,,,(n)(Q')k 

(9) 

The real function fk,,(n) should be determined in such a way that A,,AL satisfy a 
relation of the form of equations (6). This is achieved by writing 

where use has been made of equations (2)-(7). The symbol [n],! is defined by 

[.I,! = [nI,[n - 11,b - 2Iq '.'[11, 

Note - h A n 
1 - " I.." 1 - - '  

These operators give a multi-boson realization of the quantum Heisenberg-Weyl 
algebra, thus 

A,A: - q ~ : ~ k  = q-Nk 

[A',, A:] = AI . 

They satisfy the properties that  one would expect by analogy with the single q-boson 
case, e.g. 
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3. Holstein-Primakoff realizations of SUq(2) and S I J q ( l , l )  

The Holstein-Primakoff (boson) realizations of the algebras SU(2) and SU(1,l) are 
well known [5]. For SU(2) we have 

J ,  = \/-bt 

J Kalriel and A I Solomon 

J- = bJZ; ;+ i - - f l=  G b  

J o = n - u  

where U is the 'angular momentum' quantum number U = $, 1, $, 
Using equation (1) we find that 

[J+,  J-I = Z J o  

[Joj J*1 = *J* 

which are the familiar SU(2) angular momentum commutation relations. 
Similarly, the standard Holstein-Primakoff realization of SU(1,l)  is given by 

K ,  = J2u- 1+ n b t  

I<- = b J w =  f i b  

KO = n + U 
where U is real and positive. (We shall take 2u to be integral and positive here.) 

These operators satisfy the commutation relations of SU( 1 , l )  

[IC,, IC-] = -2K0 

!KO9 K+l = *I<* ' 

A generalization of these Holstein-Primakoff realizations, based on the use of the gen- 
eralized boson operators of equations (Z), was presented in [6]. A Holstein-Primakoff- 
like realization of the quantum algebra SU,(li 1) in terms of the q-boson operators 
was suggested by Chaichian et  a1 [7]. They wrlte 

K,  = f i o '  

K- =a& 

KO = n +  4 .  
These operators satisfy 

[I<+, I<-] = - [ 2 K 0 l q  

[KO, K*] = &IC, . 
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A generalization to arbitrary U is given by 
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IC+ = J [ 2 u  - 1 + n], at 

K , = n + a  

which also satisfy the S U 9 ( l , l )  relations equations ( 2 0 )  and reduce in the limit 
q -t 1 to realization of SU(1, l )  given in equations ( 1 7 ) .  The corresponding Holstein- 
Primakoff realization of SU,(2) can be similarly formulated as 

J - [2u+1-n] ,af  + - J  
J , = n - a  

for which 

These realizations of SU,(2) and SU,(I, 1) can be expressed in terms of the conven- 
tional boson operators by using equation ( 7 ) .  They can be generalized to realizations 
in term3 of kj q-bosons by replacing a by A; and n by N ;  5 [[f!!. Thus, for SU,(2) 
we write 

in terms of the operators A , , A t  of equations (10). The analogous operators in the 
multi-photon SU,(l, 1) case are given by 

KF)= N ~ + ~  

The states that we shall consider in this paper are coherent states generated by the 
multi-photon realizations of equations (24) a n d  (25) of SU,(2) and SUq(l,  l ) ,  respec- 
tively, in addition to the coherent states generated by the multi-photon realization of 
the quantum Heisenberg-Weyl algebra, equation (12). In fact, only the cases k = 1 
or 2, corresponding to the singlephoton and two-photon cases respectively, are of in- 
terest here as the other cases do not result in squeezing due to the vanishing of most 
cf the expectdicns (-ee eqoations (54)). 
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Note that the L = 2 Holstein-Primakoff realization of SU(1, l )  is not the same (for 
any U )  as its standard two-boson realization; nor is it in the quantum case for which 
a realization is given by Kulish and Damaskinsky [8] as 

K+ = k(Qt)' 

I<- = k(a)' (26) 
KO = +(n+ $) 

with k = (q  + q-')-' and [I(+, IC-] = -[ZK,],.. Squeezed states corresponding to 
this latter case have already been treated by the present authors [9]. 

4. Generalized coherent states 

The familiar (Glauber) coherent states may be defined as eigenstates of b 

blP) = PIP) .  (27) 

They satisfy 

IP) = N-' exp(Pbt)lO) 
where 

NZ = exp(lPI2). 

In principle, either equation (27) or equation (28) can be used as astarting point for 
a definition of q-coherent states. It is easily shown that an attempt to  use equation (28) 
does not lead to a normalizable state. Starting from equation (27), q-coherent states 
for the q-boson operator Q were constructed in [4]; this leads to the (normalizable) 
state 

Clearly exp,(t) is convergent for all t and limq-.l exp,(t) = exp(t). 
The isomorphism between the generalized q,  k-boson operat,or A, and the q-boson 

a enables a coherent state for A, to  be written down immediabely as 

IP; k) = N-'exp,(PA:)IO) (33) 

with N2 given by equation (31). In terms of the number eigenstates of the conventional 
boson operators we have 

m 
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where the coefficients ci are given by 

p' c. = - 
' " (35) 

Coherent states for SU(2) and SU(1, l ) ,  ag well as the usual Heisenberg-Weyl coher- 
ent states, have been considered by several authors (see, for example, [6], [lo] and 
references therein.) The Holstein-Primakoff realization has been used to construct 
coherent states of the SU(2) and SU(1,l)  groups both in terms of (conventional) 
boson operators b and (conventional) multi-boson operators B, [2]. We may use the 
q-analogues of the Holstein-Primakoff realization given above for SUq(2) and SU9(1, 1) 
by equations (24) and ( 2 5 )  to construct coherent states for these latter groups. For 
S U q ( 2 )  we propose the following three distinct forms: 

IP; = N-'exp,(PJ~))IO) 
and 

IP; k)eigen a normalized eigeustate of JLk) . 

(Note that the normalization factor differs in value for each case; the vacuum state is 
the normalized vacuum for both conventional bosons b and q-bosons a). 

These states can be expressed in terms of number eigenstates of the conventional 
boson operators of the form 

20  

Ip';k)q = N-l c c i ( k i )  
i=o 

where 
20  

N2 = ci2 
i = O  

112 

Ci,exp, = p'[ 'Ip] 
9 

- 1 1 2  p' 2a 
Ci,cigen = 2 [ i ] 

P 

The q-binomial coefficient used in these expressions is given by 

(39) 
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For SU9(1, 1) we find that exp(P1CY))lO) is not normalizable, so we remain with two 
possibilities, namely 

J Kalriel and A I Solomon 

I 
Note that the former state (44) is not normalizable for the usual twwboson cwe 
equations (26) (see [9]). In the boson number basis we obtain expressions of the form 
specified in equation (34), with 

and 
-112 Pi 2 a - l f i  

ci,eigen = [ i 3 
9 

(45) 

(46) 

The former state is normalizable for p2q2"-' < 1, while the latter is always nor- 
malizable. 

5. Squeezing properties of generalized coherent states 

The two orthogonal components of the (conventional) electromagnetic field are de- 
noted by z = (b+ b f ) / f i  and p = (b - bt)/i& alluding to the analogous degrees of 
freedom of the corresponding harmonic oscillator. The uncertainties of these compw 
nents are given by 

[AI]' = ( z 2 )  - (z)* = U + U 
[Ap]' = ( p 2 )  - ( p ) *  = U - U 

where, for states specified by real wavefunctions, 

U = (n + 1/2) - (b)2 

U = (b') - (b)'. 

(47) 

For the vacuum, and coherent states satisfying equation (27), U = 0 and U = 1/2; i.e. 
AI = Ap = l/& and Az.Ap is minimal. States for which either AI or Ap is less 
than l / f i  are referred to as squeezed states ([ll,  121). We may introduce the z, and 
p ,  components of the q-electromagnetic field in complete analogy t o  the above by 
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which have q-uncertainties given by 

where, for real states, 

For the q-vacuum (which is the same as the ordinary vacuum) and the q-coherent 
states defined in equation (30) we find that vG = 0, i.e the q-uncertainties satisfy 
Az, = Apq. For the other generalized coherent states defined in section 4 we find 
that one of the two q-uncertainties Azo or Ap, is smaller than the other. This q- 
uncertainty is referred to as q-squeezed. 

We now present the actual expressions for the various expectation values appearing 
in equations (47) and (49). 

For a state of the form Cici l i )  given in terms of the conventional boson number- 
eigenstates we have 

(b’b) = cc : ( i )  
i 

(b)  = c c i c i + * J ; T - i  

(b’) = x c i c i + z J ( i +  l ) ( i + 2 )  
i 

For states generated in terms of A?, which are of the form Xi ci12i), we have 

.T- 9,- .~ @bj = ~ C ; ( Z Z J  
i 

(b )  = 0 

(b ’ )=  x c i c i t l ~ ( 2 i + 1 ) ( 2 i + 2 ) .  

For states generated by the A: generalized boson operators witli k >_ 3 we have 

(b’b) = x c : ( k i )  

(b)  = 0 

(b’ )  = 0. 

(53) 

(54) 

To calculate the q-uncertainties we have to  modify the above expressions (52)- 
(54) by replacing each factor surrounded by parentheses on  the right-hand sides by its 
q-analogue, that  is, ( i )  - [i],, etc. 
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I I 

1.0 a9 os 
q 

Figure 1. Position squeezing for the SUq(2) singlephoton q-mherent exp and expq 
states (o = 5 and 10). 

1.0 08 0.6 0.4 

a 

Figure 2. Momentum squeezing for the SUq(2) tw-phobn a-coherent expand expq 
states ( 0  = 10). 

6. Computational results 

The conventional and quantal squeezing properties of the various coherent states con- 
sidered above were studied in a series of representative computations, presented as 
figures 1-4. We consider both a conventional electromagnetic field, i.e. one expressed 
in terms of the conventional boson operators 6,  bt and a 'quantal' field, expressed in 
terms of the q-bosons a, at, The study of the conventional uncertainties of the quadra- 
tures of the physical electromagnetic field represents the point, of view according to 
which of the various q-coherent states defined in section 4 should be considered as 
potential approximations to some 'exotic' states of the conventional electromagnetic 
field. The quantal uncertainties represent a fundamental departure from the con- 
ventional theory, which involves the q-observables i, and p,. The conventional and 
quantal uncertainties are evaluated with respect to the various (normalizable) states 
discussed in section 4: namely: 
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I 

D 

Figure 3. Momentum squeezing for the SUq(I, 1) single-photon 9-coherent exps 
states (0 = 10) 

0.2 0.4 a6 0.8 
z,qL7-112 

J 

Figure 4. Momentum squeezing for the SUq(l, 1) two-photon q-coherent expq states 
(0 = 10). 

(i) HW, coherent state (exp, state) (equation (30)); 
(U) ~ U , \ L )  scaxes: I . . \  nl, In,  - 1 - 1 ~ ~  

(a) exp state (equation (36)); 
(b) exp, state (equation (37)); 
(c) eigenstate of J I  (‘step-down eigenstate’); 

(a) exp, state (equation (44)); 
(b) eigenstate of KT (‘step-down eigenstate’). 

We now present and discuss some representative results. 
As expected, in the q = 1 limit the conventional and quantal uncertainties are equal 

to one another. Furthermore, in the SU,(2) case, in which both the exp and the exp, 
versions of q-coherent states exist, the distinction disappears in the q = 1 limit. This 

(iii) SU,(l, 1) states: 
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is useful as a check of the computed results. For the single-photon Heisenberg-Weyl q- 
coherent states, the case q = 1 is the familiar coherent state, for which the position and 
momentum uncertainties are both equal to the minimum uncertainty value of 0.5. In 
all cases except the HW, (quantum Heisenberg-Weyl) coherent state expectation of the 
quantal field there is squeezing; i.e. one or other of the components has  a dispersion less 
than that in the vacuum state. Note that the conventional photon field IS squeezed in 
the HW, coherent state; this case has already been treated by the authors [9]. In some 
cases we plot the value of the squeezed dispersion against the squeezing parameter 
I ,  taken to he real; or against z/q"-'12 to allow for the convergence criterion of the 
state equation (45), for constant q.  Whenever appropriate, we plot the dispersion 
minimized with respect to the squeezing parameter against the quantum index q ,  for 
various values of U where relevant. As the analysis is symmetric under the interchange 
q - l / q  the whole range \s covered by abscissa1 values 0 (extreme quantum algebra) 
to 1 (standard algebra). 

The HW, two-photon momentum uncertainty agrees in the limit q = 1 with the 
value of 0.15872 de tek ined  in [l ] Agreement between the q = 1 limit and the 

for the SU,(2) q-coherent states, figures 1 and 2.  For these states the uncertainties 
obtain some finite minimal values as functions of the parameter z ,  for any fixed value 
of q ;  cf figures 1 and 2. In some cmes the minimal uncertainty vanishes, for all or 
certain values of q ,  at  the end of the range of z values for which the corresponding 
state is normalizable, cf figures 3 and 4. Further properties of the conventional and 
quantal uncertainties computed for the various cases can be read from the figures. The 
present study is not meant to exhaust the subject. In particular, no effort was made 
to cover the whole range of the various parameters involved. In addition, no discussion 
of the time evolution of these phenomena was made, as this would entail postulating a 
specific model Hamiltonian determining the dynamics.For example,using a reasonable 
q-analogue of a quantum harmonic oscillator it may he shown that the t-evolution 
of the position quadrature operator does result in squeezing in the HW quantal case 
although initially (at t = 0) there is no squeezing [14]. The results exhibit a rich 
variety of phenomena which can only be discussed in rather speculative terms at  this 
stage, a temptation we deliberately avoid. Further thought is needed before a sound 
assessment of the potential value of these results can be made. 

J Kotriel and A I Solomon 

corresponding results in [IO]is o b t  erved for the single- and two-photon uncertainties 

The modified q-boson algebra 

a.' - qat ,  = 1 (55) 
has recently been considered [15]. This algebra can be represented in terms of con- 
ventional boson operators as 

The formalism developed in the present paper remains valid provided that [z], is 
redefined to mean [z], = (q" - l)/(q - 1) .  
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